
www.manaraa.com

Radboud University of Nijmegen

Faculty of Science

Bachelor’s Thesis

presented by

Geert Smelt

January 23, 2011

Programming web applications securely

Supervisors

Robert J. van Manen Director of Forus-P B.V.
Erik Poll Professor at Radboud University of Nijmegen

www.manaraa.com

Contents

1 Introduction 3

2 Web Applications 5

3 Code scanning 6
3.1 What is code scanning? . 6
3.2 History . 6
3.3 Why CodeSecure? . 7

4 Penetration testing 11
4.1 What is automated penetration testing? 11
4.2 History . 11
4.3 Why Hailstorm? . 13

5 Comparison of code scanning and pen testing 15
5.1 Code scanning vs. (automated) pen testing 15
5.2 CodeSecure vs. Hailstorm . 16

6 Experiments 18
6.1 General results . 19
6.2 Cross-Site Scripting . 24
6.3 SQL Injection . 32
6.4 Conclusions of experimenting 36

7 Combining code scanning and automated pen testing 39

8 Future Work 41

9 Conclusions 42
9.1 The project in general . 42
9.2 The tools used . 43

References 46

www.manaraa.com

1 Introduction

When programming a web application it is generally a good idea to program
it securely. A rule of thumb is that an application that is accessible by its
users from the internet, usually is also accessible in ways you do not want as
a developer. Take for instance the example of a web shop. Customers of the
web shop generally do not like their credit card information being obtainable
by anyone except the website’s owners. As a result, the application will need
a form of security to gain the trust of the would be customers.

In this thesis I am going to investigate some of the tools available for a
security programmer to ensure that the application he is developing is safe
enough to be placed on the web. I will do so by comparing examples of two
kinds of tools:

• source code scanners (hereafter named ‘code scanners’)

• automated penetration testing tools (hereafter named ‘automated pen
testers’)

Both kinds of tools focus on a different aspect of web application security.
It seems useful to combine both types of tools in order to strengthen a web
application’s security. I will investigate the possibility of combining these
two types of tools. The reason I do this is because it is currently impossible
to do all of the security testing with with software only, let alone with one
tool in particular. A combination of these tools could mean a developer
would have less trouble in programming a secure web application, because
most of the vulnerabilities present in web applications are too specific for
an automated penetration tester to find by itself. These tools however do
present the user with some information on the security level of his applica-
tion, just not nearly enough to skip manual testing altogether. However, I
will not specify all the attack possibilities on a certain web application, be-
cause you can read all about that in books like “19 Deadly Sins of Software
Security”[8].

Before I can try combining the two methods of scanning for vulnerabilities
in web applications, some things need an introduction or explanation. In
chapter 2 I will first give a short definition of web applications. Afterwards I
will be describing the tools and techniques of code scanning and automated
pen testing in chapters 3 and 4 respectively. After having explained both
methods I will then compare them to each other in chapter 5 to find out
the advantages and disadvantages of both. Following this introduction of

3

www.manaraa.com

the code scanning and pen testing tools and techniques, in chapter 6 I will
experiment with both to see just how effective the tools are at finding possi-
ble vulnerabilities in an open source web application written in PHP. Topics
that will be addressed include the amount of false positives both tools gen-
erate, the readability of the reports generated and the difficulty of fixing an
actual vulnerability. Finally, in chapter 7 I will investigate the possibility of
combining both tools.

4

www.manaraa.com

2 Web Applications

Before we can elaborate on the security of web applications it is useful to
state precisely what we mean by the term. Generally a web application is
a piece of software that is accessible through a web browser, making it one
of the easier ways for a cross-platform implementation. Web applications
are sometimes also referred to as ‘Software-as-a-Service’ or ‘SaaS.’ Examples
of web applications include services like webmail, online auctioning, retail
sales and wikis. Google is a big player in this field with its products Gmail,
Google Calendar, Google Docs etcetera.

In his article ‘Modeling Web Application Architectures with UML’ Jim
Conallen gives a detailed definition of web applications. [5] He writes that
there are a multiple meanings to the term web applications, for example
“some believe a web application is anything that uses Java, others consider
a web application anything that uses a web server. The general consensus
is somewhere in between.” Personally, I do not agree with this ‘general
consensus’; I think the key aspect of a web application is the fact that it is
accessible over the internet and not limited to a single computer. As a result
I would define a web application as an application that is accessible over the
internet. According to Conallen a web application is “a web system (Web
server, network, HTTP, browser) in which user input (navigation and data
input) effects the state of the business.” Conallen also writes that a web
application is somewhat like a client/server system, only there are a few key
differences. One of these differences lie in the nature of client and server
communication. A web application’s primary means of communicating is
via HTTP, which is designed for fault tolerance and robustness. Communi-
cation between a client and server in a Web application typically revolves
around the navigation of web pages, not direct communications between
server side and client side objects. According to Conallen the architecture
of a Web application is, generally speaking, not much different from that of
a dynamic Web site. [5]

This type of interaction is another big advantage of web applications. It
means the end user does not need to install anything on his computer, and
thus avoid loss of disk space. This also means a user is not required to do
anything in terms of patching/updating the web application, but only from
the web application’s server administrator. A downside to this, however,
is the fact that connection interruptions usually mean a denial of service,
unless some kind of caching is implemented.

5

www.manaraa.com

3 Code scanning

3.1 What is code scanning?

In short, code scanning is a technique for assessing a web application’s se-
curity by means of a tool that analyzes the application’s source code to find
insecurely programmed parts. When you’re developing a web application it
is very important that you program them securely, especially when you’re
dealing with sensitive data. To make sure your web application is secure,
you will need to do some testing. There are a lot of ways to check whether
a web application is secure, two of which are code scanning and automated
pen testing as described in the introduction on page 3. The first step that
should be taken is code scanning. As you would have guessed a code scanner
assesses the source code of a given application. That also means it can be
used during the development phase of the web application. This is the rea-
son why it should be done first, i.e. to detect and correct potential security
flaws before the application goes live, because as we all know repairing a
deployed (web) application is much more expensive than preventing bugs,
and in this case security flaws. This is where the code scanners come in.
Take for example an application that crashes without providing error mes-
sages. It is generally a good idea to handle errors that cause an application
to crash and cause a denial of service. If this isn’t properly handled a reg-
ular user usually does not know what has gone wrong. This flaw can be
spotted during code review, but it is quite hard to see yourself. With the
help of a code scanner a developer can find and correct the ignoring of errors
before the application is fully finished. A code scanner is an automated way
of checking the source code of an application for flaws that could lead to
potential security breaches.

3.2 History

Initially there was little need for code review. Back then people have been
more interested in network security. “Current technologies such anti-virus
software programs and network firewalls comparatively secure protection
at the host and network levels, but not at the application level. However,
when network and host-level entry points are relatively secure, the public
interfaces of Web applications become the focus of attacks.”[9] Before the
code scanners were available you would have to resort to books like “19
Deadly Sins of Software Security”[8] to find out what you could do to fix

6

www.manaraa.com

the security flaw someone had pointed out to you. With the introduction
of code scanners it became a bit easier to check whether the code you had
written was secure or not. If it was not secure, the program would point
you in the right direction to solve the problem – note that code scanners
are tools that aid a (human) code reviewer in his work. It is not a complete
replacement for the way source code is reviewed, because a developer still
would need a clear understanding as to why the source code was flawed.
A code scanner only helped him pinpoint the exact location of a security
flaw. Code scanners do also contain a lot of false negatives, which means
the tool doesn’t detect all of the flaws present in the application, and false
positives, which means the tool detects a flaw that actually isn’t one. The
code scanner became more of a tool to be used during code review than a
complete replacement of the process.

Figure 1: The CodeSecure Verifier

3.3 Why CodeSecure?

Examples of code scanners include CodeSecure, Pixy, Fortify 360 and PHP-
SAT. I will not go into details here, but you can read up on the tools yourself
to compare them. To do so you could read Nico L. de Poel’s master’s thesis
“Automated Security Review of PHP Web Applications with Static Code
Analysis” as it gives a good comparison of Fortify 360, CodeSecure, PHP-
SAT and Pixy. [6] Pixy is also described in “Pixy: A static analysis tool
for detecting web application vulnerabilities.”[11] In my thesis I will make
use of Armorize’s CodeSecure tool. According to fellow students it’s hard

7

www.manaraa.com

Figure 2: CodeSecure Scan Results Example

to “get access to a trial server running CodeSecure” [12]. The main reason
I chose to use CodeSecure as my code scanner is that I have the benefit of
working for a company, called Forus-P1, that already has a license to use
it. A thing worth mentioning is that CodeSecure comes in a device with
an internet connection, for remote access, and a small hard drive, in order
to store source code to be scanned. This device is called the CodeSecure
Verifier by its developer Armorize and is shown in figure 1 on page 7. For
a general idea about what the results of a scan performed by CodeSecure
looks like, please see figures 2 and 3 on pages 8 and 9 respectively.

On their product web page Armorize describe their CodeSecure Verifier as

1http://www.forus-p.nl/

8

http://www.forus-p.nl/

www.manaraa.com

Figure 3: CodeSecure Scan Results Example (cont.)

an appliance that hosts the source code analysis and verification engine.
It is being accessed via a web browser so it is a centralized source code
analysis platform for developers, managers and security personnel. It can
be used simultaneously by multiple users since they all connect to the same
device.

Forus-P has a trial license for one of these devices with multiple versions
of OWASP’s WebGoat uploaded to it, which is a deliberately insecure web
application intended for studying purposes, allowing me to perform scans
remotely. The basic idea of this device is that you have a server you connect
to (the Verifier device) and you upload the source code of the application
you want to scan to it. This is being done by means of either ZIP, FTP,
SVN, CVS or a Windows Share. Only after you have uploaded the web
application’s source code to the Verifier, you are able to scan the application
for security flaws. At the moment Armorize is in an advanced stage of
development of its CodeSecure software that no longer requires the user to

9

www.manaraa.com

make use of a piece of hardware. The Verifier will then become obsolete,
because CodeSecure can then be installed locally. At the time of writing,
the release of this product is scheduled to be at the end of 2010. As a
result I may be able to use the newer version of their software, but for now
I will use the Verifier. Another feature of the Verifier is that it is possible to
download a workbench, which is in fact the well-known Eclipse IDE with an
extra plugin for code scanning, and scan an application directly from your
IDE after you have set up a connection between the IDE and the Verifier.
The code scanning plugin is also available for Microsoft’s Visual Studio. The
plugin helps upload the source code to the Verifier, which in turn directly
starts scanning it.

10

www.manaraa.com

4 Penetration testing

4.1 What is automated penetration testing?

In short, automated penetration testing is a technique for assessing a web
application’s security by means of a tool that performs all kinds of different
attacks on it. As I have stated before in chapter 3, I will discuss two types
of automated application scanners: code scanners, described in chapter 3 on
page 6, and automated penetration scanners, which I will describe in this
chapter. As you would have probably guessed, an automated penetration
scanner is a tool that automates the work of a (human) penetration tester.
This raises the question: “What is a penetration tester?” A penetration
tester, from here on abbreviated as pen tester, is an application developer
who tries finding security flaws in an already deployed (web) application. A
penetration tester has the advantage of having testing possibilities that a
‘regular’ code reviewer does not have. For instance the penetration tester is
able to fill out forms on a web page, but a code reviewer can only try to see
if it is possible for a hacker to enter malicious code into the forms’ source
code.

4.2 History

In his thesis ‘Automated Static Code Analysis - A tool for early vulner-
ability detection’ Dejan Baca writes about the shift in focus during web
application development.[2] They claim that during recent years software
developers have changed focus from only reliability measurement to include
aspects of security threats and risks. Manual audit done by experienced
programmers is a time consuming but otherwise efficient method for con-
ducting secure code revision of software. The main reasons they introduce
automated auditing tools in their paper are to decrease manual audit time
and to integrate automatic tools as part of a revision update. The first issue
with this has its background in program checkers (Johnson 1978 [10]) fol-
lowed by several generations of automated auditing tools, from rule based
to more flexible context based. Code scanners use a database of keywords
to find vulnerabilities and output a vulnerability report by doing a syntac-
tic matching (Wagner et al. 2000 [13]). These tools report a large number
of false positives since they lack a deepened context analysis, and there-
fore manual examinations to exclude the false positives are necessary. More
recent global analysis tools perform an analysis of program semantics (for

11

www.manaraa.com

Figure 4: An example of an assessment performed by Hailstorm

an overview see (Chess and McGraw 2004a [4])) in an effort to minimize
the amount of false positives. The second issue with it is the possibility to
integrate automated tools into the software development life cycle as im-
provement and effectiveness factors. Development cost savings are part of
a more general return on investment (ROI) calculation for the investigated
project. For example, as you can imagine, an application that doesn’t make
use of sensitive data has a lower priority than one that does, in terms of
money spent on security assessments.

12

www.manaraa.com

4.3 Why Hailstorm?

Naturally there are multiple tools that can do the penetration testing for
you. Examples of these tools include Acunetix WVS, Cenzic Hailstorm
Pro, HP WebInspect, IBM Rational AppScan, McAfee SECURE, N-Stalker
QA Edition, QualysGuard PCI, Rapid7 NeXpose and probably a lot more.
I will not write up a full comparison of these tools here. If you wish to
compare the aforementioned tools you can read the paper ‘State of the Art:
Automated Black-Box Web Application Vulnerability Testing’ by Jason Bau
et al.[3] In my thesis I will make use of Cenzic’s Hailstorm Pro. The reason
for this is, just like is the case with the code scanner, that my employer
at Forus-P possesses a license to use it. The reason why Forus-P uses it
is that according to Frank Schaap, a former employee who compared HP’s
WebInspect and IBM’s Rational AppScan tools and Cenzic’s Hailstorm in
an internal document, Hailstorm is a tool that generates significantly less
false positives than the other alternatives and it also has more enterprise
options than the other two tools.

To give you an idea what the interface looks like see figure 4 on page 12.
Just like CodeSecure, Hailstorm outputs its results in a detailed report. For
a detailed output of a scan performed with Hailstorm please have a look at
figure 10 on page 31.

Cenzic describe Hailstorm Pro as the most accurate software product in the
market, when it comes to software security. It features so called SmartAt-
tacks that can be used to test a web application by scanning for a specific
security flaw. It works by dragging and dropping them from a list to an
application and then pressing the start button. They are also customizable,
so you can scan very specifically. These SmartAttacks are updated weekly
to stay up to date with the most abused flaws.2

Hailstorm also allows for entering login credentials. This allows for scanning
from a specific user account, which is useful if you would like to know whether
a basic user can access things he should not be able to, i.e. by means of
session hijacking.

Something worth noting is the difficulty of obtaining a trial license to see
if the product fits you. My employer has been in contact with Cenzic for
multiple months, but I have only recently received my trial version download
link from them. Until then I was a little worried about it, because I feared

2http://www.cenzic.com/products/cenzic-hailstormPro/

13

www.manaraa.com

I would not get my license in time to use Hailstorm for this thesis. Luckily
I did get the license and am now able to scan my web applications with it.
The results of these scans can be viewed in chapter 6 on page 18.

14

www.manaraa.com

5 Comparison of code scanning and pen testing

5.1 Code scanning vs. (automated) pen testing

In this section I will describe the advantages of using code scanning over
pen testing and vice versa. The differences listed below are not my personal
experience, but come from various sources. After performing experiments
with both tools (see chapter 6 on page 18), I will detail my own experi-
ence with the two scanning methods, and specifically with Hailstorm and
CodeSecure.

1. As you may or may not have guessed from reading chapters 3 and 4,
when asked about fundamental differences between the two techniques,
the first thing that should come to mind is the way the tools set up a
‘connection’ to the web applications to be scanned. When performing
a code scan, the web application that will be scanned does not need
to be up and running for it to be assessed. The reason for this is the
code scanning technique solely scans the application’s source code for
any anomalies in terms of security flaws. Compared to pen testing
this is an advantage, since pen testing, be it automated or manual,
requires you to have a fully functioning (part of a) web application
running on your web server before you are able to do any pen testing
whatsoever. This means you can integrate code scanning very early
into the development process whereas a pen tester cannot start until
at least a portion of the application is indeed running on a server.

2. Code scanning is harder to do. The reason for this is that a code
scanner cannot enter values into form fields and submit them. Surely
there are things you are able to scan for before putting the web ap-
plication out there, such as commented login credentials, however it
is not fully impossible for a code scanner, either human or tool, to
detect possible security flaws in a form. The issue here is not that you
cannot find any flaws, but merely the level of difficulty of finding such
a flaw by performing a code review. Code reviewing has to cope with
finding out where in the source code there is a function that sanitizes
requested input before processing it. An automated pen tester has
the advantage here, as it can indeed enter values into form fields and
observe the rendered responses, without having to look for a function
that should sanitize input. However, it is just as impossible for a pen
tester to try out every possible input as it is for a code scanner. Take

15

www.manaraa.com

for example the security flaw of SQL injection. In their paper ‘Testing
and comparing web vulnerability scanning tools for SQL injection and
XSS attacks’ Fonseca et al. write that to detect SQL injection the
code scanner uses the source code to follow all the possible paths and
the changes it may go through due to the process of the SQL query
text and finally parses the result. However, this technique will proba-
bly not find all security flaws because of the source code is generally
too complex. In these situations it is preferable to use the pen testing
approach as it doesn’t look towards the source code, but merely gen-
erates input and then checks whether the returned output indicates a
security flaw.[7]

3. Another difference between the techniques is the (automated) pen
tester’s inability to check for things like page name guessing. Usu-
ally it is quite hard to find a page when you do not know its name.
You could try page names like /admin.php, /login.php and so on,
but you will probably never find all pages you can tamper with. In
this case you will not find anything with a pen tester, either human
or automated, but a code scanner should pick up on these things as
it is able to scan for the files that have been uploaded instead of just
guessing their names.

As you see, both code scanning and pen testing have their advantages, thus
it seems like there should be no reason to not use them both when you are
developing a web application. It is even recommended to use a code scan-
ner during development, as “A late lifecycle penetration testing paradigm
uncovers problems too late, at a point when both time and budget severely
constrain the options for remedy. In fact, more often than not, fixing things
at this stage is prohibitively expensive.” [1]

5.2 CodeSecure vs. Hailstorm

Besides the differences between both methods of scanning for vulnerabilities
in web applications, there are also a few differences between both tools I have
used to experiment with. In this section I will describe those differences,
however not as thorough as I did in the previous section, as the differences
in scanning methods obviously also apply to the tools that automate the
methods.

1. To start off, CodeSecure comes in its own device. The reason for this,

16

www.manaraa.com

according to a member of Armorize’s support staff with whom I spoke,
is to prevent pirating. According to him pirating was a very large
concern for them, especially because they do much of their business
in Asia, where intellectual property rights are not as strongly upheld
as for instance Europe or North America. Armorize is also very close
to releasing a new version of CodeSecure, only this time as software
bundle. Unfortunately I cannot make use of that version, meaning it
will have to be saved for future work.

2. The advantage of having a device instead of software is that it is then
possible to access the software remotely. The only, although very
small, disadvantage of this is that you will need to upload source files
to the device every time you want to perform a vulnerability scan.
This is not as tedious of a task as you think, due to the IDE plugins
that exist (see chapter 3 on page 6).

3. Hailstorm only runs locally or by means of a VMware virtual machine,
which in turn allows for a portable install. The reason for this is that
it is possible to create a virtual machine with a pre-installed version
of Hailstorm on it, and then transfer it to another employee so he can
perform scans as well.

4. CodeSecure offers online joint vulnerability reviewing, due to being re-
motely accessible. This is being done by labeling possible vulnerabili-
ties. Four labels exist: HOT (the default setting), CONFIRMED, WARNING
and SUPPRESSED. Hailstorm’s only way to do vulnerability reviewing is
by a single user, and only allows for omission of false positives before
generating reports.

As it is impossible to say, for example, how many true positives both tools
generate before doing any scanning, I will come to that later on in chapter
6 on page 18. There I will discuss things like

• It could be possible that one of the tools is especially good at detecting
Cross-Site Scripting flaws and the other does not detect any of those.

• It could also be possible that the tools are especially good at detecting
Cross-Site Scripting and SQL Injection, but not much else.

• How hard is it to verify that the security flaw reported by a tool is in
fact a flaw?

• How hard is it to fix a reported flaw with the feedback of the tools?

17

www.manaraa.com

6 Experiments

I will experiment only with two of the most commonly known and most
dangerous security flaws – a list of which is also maintained by the OWASP
organization [14] – namely SQL Injection and Cross-Site Scripting. This is
being done to reduce the amount of work significantly and to prevent this
thesis from being too superficial by trying, and failing, to explain every single
flaw in detail. In this section I will describe the experiments I have conducted
on the Simple Invoicing web application I have found on the internet. It
was developed by BigProf with their own standard called ‘AppGini’ and
resulted in around 15,000 lines of code. On their website BigProf makes
the bold claim that AppGini generates secure code. According to them
you needn’t worry whether your code is vulnerable to SQL injection, Cross-
Site Scripting, brute force attacks etc. because ‘they have done the hard
work for you’.3 I have decided to put this latter claim to the test by using
CodeSecure and Hailstorm. The results of these tests can be found in the
following subsections.

Testing setup

In the tests that I will describe in the following subsections I have used the
hard- and software setup listed below:

• A Dell Inspiron 9400 laptop (hosting the web application that will be
scanned).

• XAMPP for Windows (the server software suite).

• Simple Invoicing by BigProf (the web application to be scanned).

• CodeSecure 3.5.8 trial version (the code scanner).

• Hailstorm v6.5 (build 5267) trial version (the automated pen tester).

Security flaws within Simple Invoicing that require administrator rights to
abuse them are relatively less interesting than ones that do not, as it is a
tad harder to obtain an administrator’s username and password and start
hacking away than it is to register your own account. Therefore most of the
tests are conducted using a non-administrator account, in order to find the
more vulnerable entry points into the application. I will however also scan

3http://www.bigprof.com/appgini/

18

http://www.bigprof.com/appgini/

www.manaraa.com

Figure 5: CodeSecure General Scan Results

using an administrator account, but I will just not go into specifics regarding
the results of those scans.

6.1 General results

Before going into specifics regarding Cross-Site Scripting and SQL Injection
(listed in sections 6.2 and 6.3 respectively), I will first present some general
results of scanning Simple Invoicing with Hailstorm and CodeSecure. This
is done to give you an idea how flawed the application really is.

Results from CodeSecure

I scanned Simple Invoicing with a ‘Default Scan’ using CodeSecure. After
that scan CodeSecure reported 1059 vulnerabilities, all of which were labeled
HOT. According to the user manual however, this label only means that

19

www.manaraa.com

CodeSecure has found a “possible vulnerability, but no manual reviewer has
confirmed or discarded it yet.” I will come to this in a little bit. For a
breakdown please refer to figure 5 on page 19.

The ‘Default Scan’ performed with CodeSecure includes the following types
of vulnerabilities:

• Reflection Injection

• Cross-Site Scripting (322 possible flaws)

• HTTP Response Splitting (120 possible flaws)

• XPath Injection

• Resource Injection (12 possible flaws)

• File Inclusion (1 possible flaw)

• SQL Injection (115 possible flaws)

• Command Injection

• Hard-Coded Password

• Information Leak of System Data (366 possible flaws)

• LDAP Injection

• Open Redirect

• Code Injection

• Risky Cryptographic Algorithm (99 possible flaws)

• Insecure Randomness (14 possible flaws)

The number of possible security flaws found is displayed between brackets.
Where there are no values CodeSecure has not found any security flaws.
Bear in mind these are only possible flaws and I will not discuss them fur-
ther, except for Cross-Site Scripting and SQL Injection, in the following
sections.

Results from Hailstorm

After performing a ‘Best Practices’ scan, which includes the seventeen what
they call ‘SmartAttacks’ (see section 4.3 on page 13 for an explanation) listed

20

www.manaraa.com

Figure 6: Hailstorm’s Best Practices Scan Results Breakdown

below, Hailstorm reported a total number of 678 possible security flaws, of
which 603 were listed as ‘High Severity’ and the other 75 as ‘Medium or
Lower Severity.’ You can see a breakdown of the results in figure 6 on page
21. Most of these flaws have fallen into the categories ‘Cross-Site Scripting’
and ‘SQL Error Message.’ The other vulnerabilities and warnings, which
add up to around 10% of the total potential vulnerabilities, include ‘Form
Caching,’ ‘Non-SSL Forms,’ ‘HTML & JavaScript Comments’ and ‘Web
Server Vulnerabilities.’ The last, however, is merely found because I didn’t
take my time to set up my XAMPP software suite to protect itself from
attacks. I have chosen not to do this, because it would go beyond the scope
of this thesis, because I have no real knowledge of such topics and because
the application would only be available locally. Detailing all these potential
flaws would be too much, so I shall zoom in on the two most common flaws
according to OWASP: Cross-Site Scripting and SQL Injection.[14]

The ‘Best Practices’ scan includes the following SmartAttacks:

21

www.manaraa.com

• Application Exception

• Blind SQL Injection

• Check HTTP Methods (1 warning, medium severity)

• Cookie Vulnerabilities (2 vulnerabilities, medium severity)

• Cross-Site Scripting (486 vulnerabilities, high severity)

• Directory Browsing (2 vulnerabilities, medium severity)

• File Directory Discovery

• Form Caching (10 warnings, medium severity)

• Forms Submitted without using POST (5 warnings, medium severity)

• HTML JavaScript Comments

• Non-SSL Form (10 warnings, high severity)

• Non-SSL Password (2 vulnerabilities, high severity)

• Open Redirect

• Password Autocomplete (2 vulnerabilities, medium severity)

• SQL Disclosure

• SQL Error Message (109 vulnerabilities, medium severity)

• Web Server Vulnerabilities (20 warnings, medium severity)

Again, between brackets the number of possible security flaws is noted,
followed by the severity of the detected flaw.

These SmartAttacks are comparable to what CodeSecure call ‘Vulnerabili-
ties.’ Since both tools use very differing terms for the possible flaws they
find, reading both their outputs may become very confusing. That is why,
from here on, I will use the term ‘Vulnerabilities’ when talking about pos-
sible severe (i.e. with relatively high impact) security flaws. When either
tool reports a vulnerability with a significantly lower impact I will make use
of the term ‘Warnings.’ Hailstorm first distinguishes between high severity,
medium and lower severity vulnerabilities. In both of those categories it then
distinguishes between vulnerabilities and warnings, resulting in six possible
categories to place a possible security flaw in. This is represented in figure
6 on page 21. Like Hailstorm, CodeSecure also uses levels of severity for the
reported security flaws. Besides that CodeSecure also uses a ‘Vulnerability

22

www.manaraa.com

Figure 7: Hailstorm’s OWASP Pen Test Results

Depth’ metric, which describes the possibility for an attacker to exploit the
possible security flaw that was found. As you may suspect, a flaw found
deeply inside the administrator’s control panel is less deep than one found
at the index page of a web application. This is a feature that Hailstorm
doesn’t have. In addition to this depth metric, CodeSecure also uses la-
bels like HOT and WARNING. However, this labeling is done by the engineer(s)
who review(s) CodeSecure’s output. CodeSecure labels all possible security
flaws as HOT by default. It is then up to the engineer(s) to find out which of
the reported items are actual vulnerabilities (labeled CONFIRMED), warnings
(labeled WARNING) and false positives (labeled SUPPRESSED). An overview of
these metrics can be seen in figure 5 on page 19.

Besides running this Best Practices scan I have also run a scan with all
SmartAttacks that OWASP deems vulnerable.[14] This set is different from

23

www.manaraa.com

the set of attacks performed by the Best Practices scan, as the Best Prac-
tices are the opinion of Hailstorm and the OWASP scan focuses on different
attacks. For example, in the best practices scan Cross-Frame Scripting is
not included, whereas OWASP does include it in their list of most severe
attacks (compare figures 6 and 7 on pages 21 and 23 respectively). How-
ever, listing these would be superfluous, so I will refrain from doing that.
The reason I have also run a full OWASP scan is that I wanted to see how
well Simple Invoicing would do against all kinds of possible attacks, rather
than just one or two. Another reason is the fact that both tools could be
performing well on SQL Injection or Cross-Site Scripting, but very bad on
any other attacks. The overview of the OWASP scan’s results can be found
in figure 7 on page 23. I am not going into detail on this scan’s results,
because that would go beyond the scope of this thesis. After taking a look
at the report, one can clearly see both tools do not just find SQL Injection
or Cross-Site Scripting flaws, but also find a lot of other things.

Something worth mentioning is the HARM score you see in the aforemen-
tioned Hailstorm results. HARM is an abbreviation for Hailstorm Applica-
tion Risk Metric which is a means of scaling the severity of the vulnerabili-
ties found in the scanned web applications. The higher the HARM-score the
graver the vulnerability found. In a way it is comparable to CodeSecure’s
vulnerability depth metric, but they cannot be translated one on one.

6.2 Cross-Site Scripting

Results from CodeSecure

As you can see in figure 8 on page 29, CodeSecure has found many possible
Cross-Site Scripting vulnerabilities in Simple Invoicing. Because there are
so many, I will not describe all of them but just highlight one. Although
the majority of the flaws have been found in administrator pages, I will not
pick one of these flaws, due to the reason stated at start of this chapter, but
I will describe one that can be accessed by any user.

For example, one of these flaws has been found in the invoices view.php

file. Besides listing the invoices vulnerability, CodeSecure also lists a detailed
step by step trace of a way this vulnerability can be exploited. You can see
an example of this (shortened) trace in figure 9 on page 30. As you can
see there are multiple rows (as many as there are steps in the execution
of a function) and three columns. The left column reports the type of

24

www.manaraa.com

change that occurs by executing the line of code directly below it, the middle
column specifies the file in which the line of code is written and executed
and the right column lists the function that was invoked in order to get to
the line of code currently being examined. This would be ideal information
to be able to review directly from your IDE, as it saves you a lot of time
switching back and forth. I have tried to set up a connection between the
CodeSecure Verifier, which hosts the trial version I was allowed to use, and
the Eclipse IDE, unfortunately to no avail. After following the procedure
listed in the user manual, a connection from the IDE to the Verifier kept
getting refused.

Using these results I set out to look if CodeSecure had reported a false
positive, or whether the possible flaw reported was indeed a vulnerability,
i.e. a true positive. The trace shown in figure 9 has helped me in finding that
out. Due to the fact that the trace is so detailed, especially compared to
Hailstorm’s information, I have been able to confirm that the potential flaw
found in the invoices example is indeed a true positive. In the thirteen-step-
long trace, of which only the first six are presented, you are given enough
information in order to pinpoint the exact location of the possible flaw. It
is then up to you to grab a book, or search the internet, in order to find out
how to correct this vulnerability, because CodeSecure does not provide you
with the details on how to fix it. In case the reported possible flaw is in fact
a false positive, an engineer is able to label this item as SUPPRESSED, like I
previously detailed on page 22. It will then no longer show up in a rescan
of the same web application.

Results from Hailstorm

After scanning Simple Invoicing, Hailstorm reported a total of 408 possible
Cross-Site Scripting vulnerabilities (see the executive summary in figure 11
on page 26). By looking at the HARM score (mentioned at the end of section
6.1), you will notice that this particular web application is immensely flawed,
with just one means of exploiting it. As you can see in figure 10 on page 31
most of these vulnerabilities are of the same kind. This is due to the web
page’s layout. Most of the web pages with which you add clients, invoices or
invoice items contain multiple forms. Due to Simple Invoicing being created
with a tool that generates the code instead of a programmer writing it (recall
the AppGini standard mentioned at the start of this chapter), most if not
all of these forms are programmed in the exact same way, resulting in the

25

www.manaraa.com

exact same Cross-Site Scripting vulnerability being exploitable in each and
every one of them.

Figure 11: Executive summary of Hailstorm’s Cross-Site Scripting pen test

Take for instance the page clients view.php. According to Hailstorm,
this page alone contains 128 different ways to exploit Cross-Site Scripting
flaws. The first six results of the scan Hailstorm performed can be found
in figure 10 on page 31. As can be seen there, the same method has been
applied in multiple fields. Hailstorm injects multiple instances of the fields
SortField, SortDirection, SelectedID and FirstRecord with (variants

26

www.manaraa.com

of) the following string:

>’><script>alert([insert random string here])</script>

If this string is not being escaped by the web application, it could result
in a Cross-Site Scripting vulnerability. As you may expect this could have
serious consequences for a web application of this type, i.e. one that concerns
money transactions.

The flaws Hailstorm reported were indeed actual vulnerabilities and not
false positives. All in all it was not really that simple to find out whether
the possible vulnerabilities Hailstorm reported were false positives or true
positives. To be able to reproduce this vulnerability I had to get help from a
colleague of mine, since Simple Invoicing uses JavaScript in order to submit
forms. Because I am not really familiar with JavaScript, but more impor-
tantly because I am fairly new to the hacking field, I had a lot of trouble
reproducing the Cross-Site Scripting vulnerabilities Hailstorm reports. Once
I had figured out that this particular vulnerability was not a false positive
I tried to find out how an engineer could repair it. Unfortunately, the so
called ‘assessment reports with remediation’ that Hailstorm generates are
not detailed enough to be able to pinpoint the location of the reported flaw.
The remediation given, does point you in the right direction, but it is not
nearly enough to be able to fix the vulnerability on your own with just this
information. For example, for PHP, you get the general tip to escape the
reserved characters, but not the location where you should do this.

Just like CodeSecure, Hailstorm also reports a list of Cross-Site Scripting
flaws in the admin pages of Simple Invoicing. Again, these are less relevant
than flaws in the publicly accessible pages of the application, so I will direct
you to figure 12 on page 28 if you would like to have a look at the results.
Please note that these are the results obtained from scanning only adminis-
trator pages. The potential vulnerabilities found in Simple Invoicing when
accessed with a regular user’s account still apply, even for an administra-
tor.

27

www.manaraa.com

Figure 12: Hailstorm’s Cross-Site Scripting pen test results of admin pages

28

www.manaraa.com

Figure 8: CodeSecure’s Cross-Site Scripting Results Overview

29

www.manaraa.com

Figure 9: CodeSecure’s Cross-Site Scripting feedback for the invoices vul-
nerability

30

www.manaraa.com

Figure 10: Hailstorm’s Cross-Site Scripting pen test results

31

www.manaraa.com

6.3 SQL Injection

In this section I will present the results of the scans performed by CodeSecure
and Hailstorm after scanning for SQL Injections in the Simple Invoicing web
application.

Results from CodeSecure

After scanning Simple Invoicing for SQL Injection vulnerabilities, CodeSe-
cure reported a total of 115 ‘Resulting Vulnerabilities.’ At first, when looking
at the ‘vulnerability specification’ part of the executive summary of the scan
(figure 13 on page 34), I thought that there was only one statement in the
entire source code that contained all 115 of these vulnerabilities. Later it
became clear to me that the term ‘statement’ as chosen by CodeSecure is
not a statement from the source code, but a string that can be injected via
these 115 vulnerabilities. CodeSecure also summarizes its findings in a list
of ‘Identified Entry Points.’ According to this list the most vulnerable files
are the most visited pages of the web application, i.e. clients view.php,
invoice items view.php and invoices view.php, all three of them con-
taining eighteen vulnerabilities.

I believe most of the possible flaws CodeSecure reports are actual vulnerabil-
ities, i.e. true positives. I came to this conclusion because I have not been
able to find any sanitation functions anywhere in the entire source code.
This has made CodeSecure believe all of the SQL query invoking functions
are flawed. However, due to the fact that all of these SQL queries are being
invoked by pressing a row in a table and not via text-based user input, a
user will probably not be able to exploit them. It is thus unclear whether
the possible flaws CodeSecure reports are true or false positives. As I said
before, I believe these are true positives, because it might not be possible
to exploit them right now, but possibly a future update of Simple Invoicing
will add functionality for manually performing SQL queries, thus leading to
an exploitable SQL Injection vulnerability.

Results from Hailstorm

Hailstorm didn’t find any of the SQL Injection flaws CodeSecure reported.
At first I thought this was due to Hailstorm not scanning the page at all,
but when I looked up the pages Hailstorm had visited I noticed this was not

32

www.manaraa.com

the case. Then it raised the question whether CodeSecure reports a false
positive in this case. This also doesn’t seem likely as I have not been able
to find any input sanitation functions in the code. My conclusion is that
Hailstorm wasn’t able to input a query to be executed by Simple Invoicing.
As I said in the section above about the results from CodeSecure, these
SQL queries are invoked by pressing a record in a table, instead of entering
strings like

x′ OR 1 = 1;−−

into search fields. Since all this functionality is automated there is no pos-
sibility of exploiting it, at least not by using only SQL Injection attacks.
Maybe after using a few other attacks it would be possible to alter this
behavior, but that is beyond the scope of this thesis.

33

www.manaraa.com

Figure 13: Executive Summary of CodeSecure’s SQL Injection Scan

34

www.manaraa.com

Figure 14: CodeSecure SQL Injection Trace

35

www.manaraa.com

6.4 Conclusions of experimenting

After scanning Simple Invoicing with Hailstorm it became clear that Big-
Prof’s claim of not having to worry about SQL Injection, Cross-Site Script-
ing and other flaws, was indeed false. As you can see in the results presented
in the previous sections, Simple Invoicing really does contain lots of Cross-
Site Scripting and SQL Injection vulnerabilities. After taking a close look
at the reports both tools produce, I found out that they report roughly the
same vulnerabilities. However I have found a couple occurrences where ei-
ther one of the tools did not detect a flaw while the other did, e.g. when
scanning for SQL Injection vulnerabilities. They also do not detect the
same flaws. In figures 5 and 7 on pages 19 and 23 respectively, you can see
CodeSecure detects 1059 Cross-Site Scripting vulnerabilities, whereas Hail-
storm only finds 408. This seems due to the fact that CodeSecure can only
guess what the effects would be, for reasons stated in chapter 5 on page 15,
while Hailstorm can directly verify a potential flaw by observing the output.
All in all, both tools have a big overlap in the vulnerabilities reported, but
they also both report vulnerabilities that the other does not. Some reasons
for this are described in chapter 5 on page 15.

I have also run an OWASP Scan with Hailstorm, to see how well Hailstorm
does on finding vulnerabilities that aren’t Cross-Site Scripting or SQL In-
jection. The results of these scans showed that Simple Invoicing is not only
very leaky when it comes to Cross-Site Scripting and SQL Injection, but
it also does not do such a good job at preventing multiple other types of
attack scenarios. For instance, as we have seen in figure 7 on page 23, Hail-
storm has also found hundreds of SQL Error Message occurrences. This
allows for an attacker to guess field names from your database in order to
construct specific (malicious) queries. Besides that there are, among oth-
ers, also Cookie Vulnerabilities, Password Autocomplete and Cross-Frame
Scripting vulnerabilities present in the application.

Hailstorm clearly is quite an all-round tool, i.e. it also detects a lot of other
vulnerabilities. However, CodeSecure is not a bad tool at all either. As
shown in CodeSecure’s general scan results (figure 5 on page 19), it also
detects a lot more than just these two vulnerabilities. The question here
is if all those items are not for the most part false positives, but it looks
like that is not the case. Only about half of the possible flaws seem to be
false positives. CodeSecure really only has some trouble with guessing the
resulting output after entering values into form fields, but that was to be

36

www.manaraa.com

expected. Sometimes it guesses correctly, while at other times the guess is
wrong.

As I already mentioned in the section 6.3 on page 32, Hailstorm does not
report any vulnerabilities of this particular type. In this case CodeSecure
does a better job, but this is mainly because CodeSecure can only see what
would happen if the input was ‘infected’ as they call it. Hailstorm can
verify this directly, because it need not guess the output. This does not
mean Hailstorm is faulty in not finding any of these vulnerabilities. In this
case, I prefer to think of not being able to find it as it not being exploitable
(yet). This may change in the future, when an update to Simple Invoicing
is released changing the current SQL query behavior.

It seems like CodeSecure is somewhat more prone to false positives, due
to the fact that it has to guess output instead of observing it. Hailstorm
reports significantly less false positives, but also manages to miss the SQL
Injections, although that is not entirely due to Hailstorm but more due to
the injections not being exploitable (yet).

Regarding the difficulty of fixing detected flaws, in my opinion CodeSecure
provides a user with much more feedback than Hailstorm does, at least
when reviewing Cross-Site Scripting vulnerabilities. CodeSecure gives you
a detailed trace of the vulnerability. Unfortunately I have not been able to
get the IDE plugin for CodeSecure up and working, because somehow the
connection kept getting refused. It would have been interesting to see to
what extent it were possible to use the IDE to perform a scan, but more
importantly, to get the results directly back into the IDE.

In contrast to CodeSecure’s reporting capabilities, Hailstorm merely pro-
vides you with its location and it will also give you some steps towards
remediation. However these remediation steps are constrained to giving a
few basic tips for each programming language.

All in all I have found a few situations where Hailstorm picked up on a
vulnerability while CodeSecure did not, and also a few where the roles were
reversed. Because the list is quite long considering the number of Cross-Site
Scripting and SQL Injection vulnerabilities present in Simple Invoicing, I
have not listed those, apart from the SQL Injection vulnerabilities. That
is why it seems to be useful to be able to combine both CodeSecure and
Hailstorm into one process. This way it would require less effort and time
from software engineers to sufficiently test their products. It would also be
less tedious for the engineers to go through all of CodeSecure’s false positives,

37

www.manaraa.com

since most of them would be filtered by overruling them with Hailstorm’s
results. If it were possible to combine them, an engineer would build a part
of the web application and have it scanned with the press of a button. In
the meantime he could go get himself a cup of coffee and when he returns
the tests would be done, allowing him to analyze the results.

38

www.manaraa.com

7 Combining code scanning and automated pen testing

After experimenting with both tools it became clear that for a really good
software development lifecycle it is necessary to integrate code scanning and
automated pen testing into one process. The reason for this is that when
using only automated pen testing tools like Hailstorm, you sometimes will
not be able to find all of the vulnerabilities in a given web application,
as we have seen in the experiments performed on Simple Invoicing. As
described in section 6.3 on page 32, CodeSecure finds a lot of SQL Injection
vulnerabilities, but Hailstorm doesn’t find any of those, due to them not
being exploitable (yet). This is a specific example of a reason why it is
useful to combine both code scanning and (automated) pen testing. The
same is also true for Cross-Site Scripting, as I described in sections 6.2
and 6.4 on pages 24 and 36 respectively, since a combination of both tools
finds more vulnerabilities in Simple Invoicing than either tool does on its
own.

So, as I had anticipated at the end of section 5.1 on page 15, it seems to
be quite useful to combine both code scanning and (automated) pen testing
when performing a code review of your web application. One way to do
this is via the export option as can be seen on the left hand side in figure
5 on page 19. Unfortunately this doesn’t work. In fact it will be removed
upon the release of version 4 of CodeSecure. I spoke with a member of
the CodeSecure support staff regarding this topic, and he told me that “it
was never fully implemented within the Hailstorm product.”. The intended
use for this function was to be able to download an XML file that you can
import into Cenzic’s tools, including Hailstorm, in order to combine both
tools’ report generating functions. Strangely enough when you download
this XML file, all you get is a blank file instead of the output you would
have liked to insert into Hailstorm, confirming the theory of the member of
the support team.

Since it was impossible to incorporate CodeSecure’s results into Hailstorm’s,
a different approach is needed. Ideally an engineer would write a new func-
tion, upload it to the code scanner to see if it is securely programmed, and
then continue his work. After a little more of the web application is complete
it is then possible to perform a quick automated pen test to see if the code
scanner was correct in detecting, or not detecting, a given flaw. This way
both tools’ false negatives, i.e. flaws that remain undetected, get scanned
twice to increase the chance that at least one of the tools to find it. As we

39

www.manaraa.com

have seen after experimenting, it appeared that a lot of the vulnerabilities
both tools report are in fact the same. This indicates an overlap in the tools.
The vulnerabilities that go undetected by one tool but not by the other are
the most interesting aspect. Recall the SQL Injection vulnerabilities that
are found by CodeSecure, but not by Hailstorm. Obviously it is not possi-
ble to find each and every one of the flaws in a given web application. The
program code usually is too complex for that and it requires a great deal of
processing power to be able to exhaustively generate inputs.

Ideally you would probably like to use a programming IDE with a connec-
tion to CodeSecure via the plugin I mentioned near the end of section 3.3 on
page 7 (or in the near future a locally installed tool), upload your files for
a security review, and then have CodeSecure (or the IDE) initiate an auto-
mated pen test by means of Hailstorm after it completes the code scanning,
sending its results along with the pen test request. Part of the fully auto-
mated solution is already there, i.e. the IDE with plugin, but for initiating
scans with Hailstorm more effort is required. Cenzic does provide access to
Hailstorm by means of a command line interface and an API. These could
then be used for starting the scan. The downside is that I have been unable
to find out where this API is described. The help function of Hailstorm
doesn’t provide the answer, and neither does their website. Since I am now
somewhat familiar with Hailstorm, I had expected it not too be too big of
a problem to start a scan using the command line interface, but then again
the real trouble would be combining both tools’ produced reports.

40

www.manaraa.com

8 Future Work

In this thesis I haven’t been able to explore all the areas of interest I would
have wanted to. Below I will detail each of these areas in a single para-
graph.

As I mentioned in chapter 3 on page 6 for example, I spoke with a member
of Armorize’s support team who told me they have a release planned within
the coming months for version 4.0 of CodeSecure, which will no longer be
shipped in an appliance model. I do not know how much has changed since
the version I used, since I cannot test it at this time.

Besides using a newer version of the tools I used to write this thesis, it
would also be interesting to have a look at some of the other types of flaws
that OWASP deems critical in their Top Tens, such as Cross-Site Request
Forgery, Insufficient Transport Layer Protection, Insecure Cryptographic
Storage etcetera. I have performed an automated pen test with the most
vulnerable types of attacks as presented by OWASP, but I have only included
a general overview in section 6.1 on page 19, as there are simply too many
topics to discuss.

Sadly, when trying to export the results CodeSecure produced, I got pre-
sented with a blank XML file. Had it been a file that actually contained
results it might have been possible to import those into Hailstorm. I have
contacted Armorize about this possible bug and they told me the feature
was getting removed in their upcoming version of CodeSecure. Please refer
to chapter 7 on page 39 for more details. It would have been interesting to
see what would have happened once I did manage to import some results
into Hailstorm. I had hoped for a combined report featuring both CodeSe-
cure’s and Hailstorm’s scan results, but since that will never be possible it
might be better to combine both tools before they do any scanning.

Unfortunately, as I mentioned in chapter 7 as well, it was not yet possible
for me to write a script that would be able to initiate a scan in CodeSecure
followed by a pen test in Hailstorm. This is due to Hailstorm’s API not
being publicly available, and since my trial has expired I could not gain
access to both Hailstorm and its API anymore. Future studies could further
explore this topic, in order to find out if it is possible to combine both tools
once access to the API has been obtained.

41

www.manaraa.com

9 Conclusions

During my research I found several interesting answers. I listed them in the
coming sections. Some, if not most of them, I have already explained in
section 6.4 on page 36, but for purposes of completeness I have decided to
mention those here as well.

9.1 The project in general

Since I am a new employee at Forus-P my employer suggested I start learning
the basics of Hailstorm. I could then learn how to use it and also it would
give me a subject to write this thesis about. However, when I first started
writing this thesis, I had not yet obtained a license to use Hailstorm. My
employer then sent a request for a trial license to Cenzic, but I only received
this fourteen day trial license in the first week of December. After trying out
the various options I started performing tests on Simple Invoicing, but when
I wanted to create vulnerability reports the next day, I was locked out of
my trial version with no way to get back in, precisely during the Christmas
holidays. During that time I found myself unable to perform scans as my
contact at Cenzic was not at his desk very often during that period. Had
I known my trial started at the time of the install instead of the time I
inserted a license, I probably also would have started the experimenting
sooner. Luckily just before New Year’s Day I received another fourteen
day trial license, so I could extract the results and include them in this
thesis.

At the start of the project I thought it was more important to show my
supervisors that I was at least producing text so they could see I was do-
ing something. Now I see I should have started experimenting a couple of
months earlier, as it appeared I was quite stressed for time in the end be-
cause I had to do all experimenting and refining of the text in just a few
weeks time. Maybe that way I would have received the second trial before
the Christmas holidays instead of during them, enabling me to do multiple
reruns of the scans and compare them.

A difficulty related to Hailstorm’s trial is the trouble I had getting a web
server up and running with a J2EE application. Since I am not used to
setting up a server I spent countless hours trying to get a web server up
and running with a J2EE application installed on it so I could start doing
automated pen tests with Hailstorm. The reason I kept trying to install this

42

www.manaraa.com

application was because at first I had chosen to scan OWASP’s WebGoat
web application and it was written in J2EE. In order not to get too mixed
results, I wanted to perform the same scans on an application written in the
same language running on the same server. After a while I then decided to
give up on trying to install a J2EE web application and installed one written
in PHP instead. This was a lot easier, as all server software needed came in
one package, i.e. XAMPP.

I have also attempted to do a detailed analysis of OWASP’s WebGoat with
both of the tools. Later on I decided to drop this, deliberately insecure,
web application, since OWASP has not implemented more than one of each
vulnerability, making a detailed analysis of the application too simple. Both
tools could then either find the flaw or not find it, and there was not much
room for false positives either.

9.2 The tools used

CodeSecure was quite easy to get up and running compared to Hailstorm.
I had almost no trouble understanding how to set up a scan with CodeSe-
cure, whereas I had real difficulty understanding what to do with Hailstorm.
Besides the ease of working with CodeSecure, my trial license lasted until I
wanted it to, as the support personnel was very helpful and were willing to
renew my license no questions asked. With Hailstorm I had some trouble
understanding how to set up a scan at first. Sometimes the interface also
is not all that clear, as there are a lot of windows, and the frames therein
sometimes make it hard to find the information you seek. Once you are
familiar with Hailstorm however, it becomes a very powerful tool to do deep
pen tests of web applications.

Hailstorm clearly is quite an all-round tool, i.e. it also detects a lot of
other vulnerabilities. However, CodeSecure is not a bad tool at all either.
As shown in CodeSecure’s general scan results (figure 5 on page 19), it
also detects a lot more than just these two vulnerabilities. The question
here is if all those items are not for the most part false positives, but it
looks like that is not the case. Only about half of the reports seem to be
false positives. CodeSecure really only has some trouble with guessing the
resulting output after entering values into form fields, but that was to be
expected. Sometimes it guesses correctly, while at other times the guess is
wrong.

43

www.manaraa.com

As I already mentioned in section 6.3 on page 32, Hailstorm does not report
any vulnerabilities of this particular type. In this case CodeSecure does a
better job, but this is mainly because CodeSecure can only see what would
happen if the input was ‘infected’ as they call it. Hailstorm can verify this
directly, because it need not guess the output. However this does not mean
Hailstorm is faulty in not finding any of these vulnerabilities. In this case,
I prefer to think of not being able to find it as it not being exploitable
(yet). This may change in the future, when an update to Simple Invoicing
is released changing the current SQL query behavior.

It seems like CodeSecure is somewhat more prone to false positives, due
to the fact that it has to guess output instead of observing it. Hailstorm
reports significantly less false positives, but also manages to miss the SQL
Injections, although that is not entirely due to Hailstorm but more due to
the injections not being exploitable (yet).

Regarding the difficulty of fixing detected flaws, in my opinion CodeSecure
provides a user with much more feedback than Hailstorm does, at least
when reviewing Cross-Site Scripting vulnerabilities. CodeSecure gives you
a detailed trace of the vulnerability. Unfortunately I have not been able to
get the IDE plugin for CodeSecure up and working, because somehow the
connection kept getting refused. It would have been interesting to see to
what extent it were possible to use the IDE to perform a scan, but more
importantly, to get the results directly back into the IDE.

In contrast to CodeSecure’s reporting capabilities, Hailstorm merely pro-
vides you with its location and it will also give you some steps towards
remediation. However these remediation steps are constrained to giving a
few basic tips for each programming language.

Things I like about both tools is the fact they give you a breakdown of the
flaws they encounter in the scanned applications. According to my employer
these stats are primarily interesting for the management of the company
hosting the web application, whereas the security staff generally want more
information like traces of the problem. I myself find these stats handy for
a quick look at the overall vulnerability of a given web application. Both
tools also feature extensive report generating capabilities.

One feature I would have liked to make use of is the importing of CodeSe-
cure’s scanning results into Hailstorm. I have sent an email to CodeSecure’s
support regarding the topic of the blank XML files, but I have not received
a reply on this yet. It sure could come in handy for scanning with Hail-

44

www.manaraa.com

storm, as CodeSecure has already reported places to look. Hailstorm would
then just have to verify the possible vulnerability instead of looking for
them. I hope, when or if it actually works, that Hailstorm then also keeps
performing scans and does not solely rely on CodeSecure’s reports to find
vulnerabilities.

Currently the general software development life cycle for building web ap-
plications goes as follows:

1. Build the web application

2. Perform an automated penetration test using any automated penetra-
tion tester.

3. Review the results to make sure no severe vulnerabilities are found
anymore.

4. Repeat the above steps.

This looks like an inefficient cycle. In my opinion, like I previously stated
in chapter 7 on page 39, the best way to integrate security review into the
software development life cycle is:

1. Start by programming a small function of the web application.

2. Upload this new function to CodeSecure by means of the plugin added
to your IDE.

3. Review the results from CodeSecure to make sure no severe vulnera-
bilities are found in the function you have written.

4. Repeat the above until a large enough portion of the web application
is done to do a pen test.

5. Perform an automated penetration test using Hailstorm.

6. Review the results from Hailstorm to make sure no severe vulnerabil-
ities are found in the finished portion of the web application.

7. Repeat the above until your web application is finished and no severe
vulnerabilities are found anymore.

Unfortunately I haven’t been able to automate this process due to the API
not being publicly accessible, as previously discussed in chapter 7 on page
39.

45

www.manaraa.com

References

[1] B. Arkin, S. Stender, and G. McGraw. Software penetration testing.
Security & Privacy, IEEE, 3(1):84–87, 2005.

[2] Dejan Baca. Automated static code analysis [Elektronisk resurs] : A
tool for early vulnerability detection. Blekinge Institute of Technology
School of Engineering - Dept. of Systems and Software Engineering.,
2009.

[3] J. Bau, E. Bursztein, D. Gupta, and J. Mitchell. State of the art:
Automated black-box web application vulnerability testing. In Security
and Privacy (SP), 2010 IEEE Symposium on, pages 332–345. IEEE,
2010.

[4] B. Chess and G. McGraw. Static analysis for security. Security &
Privacy, IEEE, 2(6):76–79, 2004.

[5] J. Conallen. Modeling Web application architectures with UML. Com-
munications of the ACM, 42(10):70, 1999.

[6] N.L. de Poel, F.B. Brokken, and G.R.R. de Lavalette. Automated
Security Review of PHP Web Applications with Static Code Analysis.
Master’s thesis, State University of Groningen, 2010.

[7] J. Fonseca, M. Vieira, and H. Madeira. Testing and comparing web
vulnerability scanning tools for SQL injection and XSS attacks. In De-
pendable Computing, 2007. PRDC 2007. 13th Pacific Rim International
Symposium on, pages 365–372. IEEE, 2008.

[8] M. Howard, D. LeBlanc, and J. Viega. 19 deadly sins of software secu-
rity. McGraw-Hill/Osborne, 2005.

[9] Y.W. Huang, C.H. Tsai, T.P. Lin, S.K. Huang, DT Lee, and S.Y. Kuo.
A testing framework for Web application security assessment. Computer
Networks, 48(5):739–761, 2005.

[10] S.C. Johnson and inc Bell Telephone Laboratories. Lint, a C program
checker. Citeseer, 1977.

[11] N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: A static analysis tool
for detecting web application vulnerabilities. In Security and Privacy,
2006 IEEE Symposium on, pages 6–263. IEEE, 2006.

46

www.manaraa.com

[12] Security master students of the Radboud University Nijmegen. https:
//lab.cs.ru.nl/algemeen/Software_Security/_CodeSecure.

[13] D. Wagner, J.S. Foster, E.A. Brewer, and A. Aiken. A first step towards
automated detection of buffer overrun vulnerabilities. In Network and
Distributed System Security Symposium, pages 3–17. Citeseer, 2000.

[14] J. Williams and D. Wichers. OWASP Top 10 - 2010. http://www.

owasp.org/index.php/Main_Page, 2010.

47

https://lab.cs.ru.nl/algemeen/Software_Security/_CodeSecure
https://lab.cs.ru.nl/algemeen/Software_Security/_CodeSecure
http://www.owasp.org/index.php/Main_Page
http://www.owasp.org/index.php/Main_Page

	Introduction
	Web Applications
	Code scanning
	What is code scanning?
	History
	Why CodeSecure?

	Penetration testing
	What is automated penetration testing?
	History
	Why Hailstorm?

	Comparison of code scanning and pen testing
	Code scanning vs. (automated) pen testing
	CodeSecure vs. Hailstorm

	Experiments
	General results
	Cross-Site Scripting
	SQL Injection
	Conclusions of experimenting

	Combining code scanning and automated pen testing
	Future Work
	Conclusions
	The project in general
	The tools used

	References

